Personal Protective Equipment: Considerations for Hazard Communication Documents

> Presented to: Society for Chemical Hazard Communication

Presented by: Ron L. Pearson, M.S, CIH, FAIHA April 25, 2018

Today's Presentation

 We will focus on PPE selection as it pertains to GHS-compliant Safety Data Sheets (SDSs)

 Some background information, theoretical and practical considerations

PPE by route of exposure

We will NOT be discussing labeling requirements

PPE – Routes of Exposure

We can really condense PPE selection down to 3 basic routes:
inhalation;
dermal, and;
ocular.

Dermal can further be broken down into hand protection v. body protection. (*Note: we are not covering physical hazards today*).

Reminder: Hazard v. Risk SDS Authors are generally not allowed to make judgments about PPE information to be included based on assumptions about downstream exposure situations (REACH Annexes on Extended SDSs are an exception).

We are not at the user's site, so we can't accurately estimate exposure (by ANY route) – in addition to precautionary handling statements, we can only give reasonably specific <u>options</u> for PPE.

Exposure Assessment Caveats

 As stated in the previous slide...we cannot perform an accurate exposure assessment – the reader has to do this – so...it behooves manufacturers and preparers to explicitly state this in Section 8 of their SDSs!!

PPE for Chemical Eye Protection Safety Glasses with fixed sideshields: Mechanical irritants and/or low-hazard (e.g. minimal irritancy) solids/pastes/liquids Indirect vented goggles: Moderate or high level of irritancy solids/pastes/liquids Indirect Vented Goggles + Faceshield Corrosive solids/pastes/liquids (generally pH <2 or >11.5, depending on buffering capacity) Unvented Goggles Specific high-hazard materials, e.g. formaldehyde

PPE for Inhalation

- Two key pieces of information needed for respirator selection are:
 - Identity of airborne contaminants (we know these from the formulation) and;
 - The airborne concentration, in the user's environment (again, we generally won't know this information), so....

The best we can do is provide general options based on the ingredients present in the formulation.

Personal Protection - Respirators

Two basic types of respirators
 Air purifying respirator (APR)
 Air-supplying

Three basic facepiece configurations
Half facepiece
Full facepiece
Half OR full facepiece

Air Purifying Respirators

 Can be assigned for individual components by cartridge type from manufacturers – e.g. organic vapor

 Remember to consider lack of information on how product may be used – e.g. has dissolved solids in a liquid media, but may become aerosolized, so addition of a particulate combination or prefilter may be advised

 PAPRs (Powered Air Purifying Respirators) – offer much higher protection factors, but need for assigning them is determined on exposure levels, which we won't know

Air Supplying Respirators

- Necessary for components that present a concern of oxygen deficiency (e.g. propellants, other asphyxiants)
- VOCs if the molecular weight is < 50 and B.P. <? 70 C., then migration in/through the sorbent bed is likely, and exposure may occur
- Unknowns thermal/chemical degradation products

Respirators – Global Issues

Different countries have different terminology and classification schemes for respirator types

Example: in the U.S., NIOSH certifies different efficiency levels and oilresistant classes for particles (e.g. N95, P100, etc.) – EU does not

As a manufacturer or author, you will need to choose how to align (or genericize) your SDS language

PPE for Skin Protection

- PPE Material Selection for skin protection is <u>NOT</u> an exact science
- Most chemicals do not have published breakthrough data for glove materials (approximately 400-500 out of 60,000+ chemicals in commerce)
- Mixtures present special challenges for determining a single glove material
- Broad-spectrum gloves (e.g. polymer laminates) can help solve some of these issues, but generally have poor dexterity and acceptance

Glove Selection – **General Considerations** Pure materials are the most straightforward Important to determine which gloves types are NOT good choices (due to degradation) Approach extrapolation based on similar molecular structures with care: e.g. Methyl acrylate - butyl rubber is best

- choice
- Methyl methacrylate PVA is best choice

Information Resources

Most definitive general resources are:

Forsberg and Mansdorf Guide

Trade associations (e.g. acrylates)
Glove manufacturer's guides (but specific to their glove models)

Secondary resources:

 Gestis website (German) – use caution – not as definitive as Primary resources (above), but very useful for identifying which gloves <u>not</u> to recommend due to degradation

Glove Testing

Methods include ASTM 739, EN 374-3 and ISO 6529

All have strengths and weaknesses

 EN used "Normalized BTT" (breakthrough time) - when permeation >0.1 or 1 mg/(cm² x min)

Glove Testing

Detection is easiest for: volatile solvents inorganic acids or alkaline solutions Detection is difficult for: Non-volatiles Poor solubility in water Reactive chemicals (e.g. isocyanates)

Glove Testing

Results are always somewhat equivocal, because:

Plan A – Use the Forsberg Guide (industry standard)

		G	ilov					
Maker Bay - Primary Chemicals Used	Butyl Rubber	Neoprene	Nitrile	PVAL	PVC	Viton	Silver Shield/Barrier	
Frequently Used:								
Ethoxyethanol (2-)	G	Y	Y	R	R	R	G	
Ethylbenzene (trace?)	R	R	R	R	R	G	?	
Formaldehyde	G	G		R	Y	G	G	Main
Methylenedianiline (4,4) (MDA)	G	G	R	?	?	G	G	ingredients
Aniline (surrogate for MDA)		Y	Y	G	Y	Y	G	of phenolic
Phenol	G	Y	?	Y	?	G	G	and
PMA (108-65-6)	G	R	Y	G	R	G	G	urethane
PME (320-67-8)	G	Y	Y	?	Y	G	?	system
TDI (trace)	G	R	R	G	R	G	G	mixes.
Toluene (trace)	R	R		G	R	G	G	
Xylene	R	R	R	G	R	G	G	
Misc:								
Acetone	G	R	R	R	R	R	G	
Ammonia	?	?	?	?	?	?	?	
Ammonium hydroxide	G	G	G	R	Y	G	?	These
Di(2-ethylhexyl) Phthalate (DEHP)	G	?	Y	?	R	G	G	chemicals
Glutaraldehyde (MDA Decon Sol)	G	G	G	R	?	G	G	used less
IPA (Isopropanol) - used in mixes	G	G	G	R	Y	G	G	frequently
Methoxy-2-Propanol (1-) (PME)	G	Y	Y	?	Y	G	?	and/or
Methyl Ethyl Ketone (MEK)	G	R	R	R	R	R	G	separately
Potassium Hydroxide	G	G	G	R	G	G	G	
Sodium Hydroxide (30-70%)	G	G	G	G	G	G	G	

CRISTER FORSEERG - S.Z. WARSDORF

G

R

Greater than 4 hours

Not recommended <1 hour

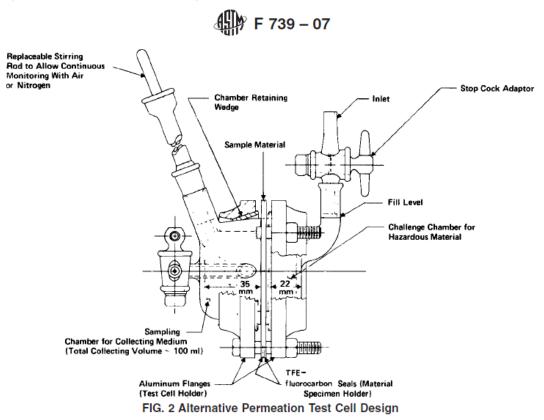
Y 1 to 4 hours

? Not tested

Chemical-Resistant Glove Selection Guide for Regulated Areas

Resin Family / Activity	Glove Based on Forsberg Guide
Wet mixes containing: • MDA • Lapox K450 • BL • PMA • PME • CB-75	Barrier [™] Glove Liner (68-38-121 thru 124) Use with appropriate outer glove to prevent puncture and improve dexterity (e.g., nitrile slurry- glove)
Contents in question	
Raw MDA or Lapox K-450	Butyl Rubber (3M# 68-38-117 thru 120)
Phenolic Mixes	Br 1.
Epoxy mixes not containing water	or Barrier™Glove Liner (68-38-121 thru 124)
Cleanup with CLI Aromatic Amine Decon. System	Use with appropriate outer glove to prevent puncture and improve dexterity (e.g., nitrile slurry-glove)
Teardown / Maintenance	
Latex mixes	
Epoxy mixes containing water	Nitrile – 11 mil thick (3M# 68-38-125 thru 128)

Limitations of the Forsberg Guide:


- Does not specify which type of nitrile glove was tested
- Does not specify what solvent was used
- Does not address mixtures
- Resulting glove options <u>do not</u> meet operator needs:
 - Difficult on/off
 - Low physical strength
 - Low abrasion resistance
 - Poor dexterity

Plan B – Permeation Testing by Glove Manufacturers

Benefits:

Leverage subject-matter experts at no cost to 3M

 Follow established consensus standard (ASTM F 739)

Manufacturer's Permeation Test Results

Limitations:

Glove Permeation Tests for 3M Polymer Mixas

V-Gd < 9 ug/cm2/min Exc. < 0.9 ug/cm2/min Allows testing for elements of a mixture but Ansell and Best only report total mg permeation

Allows for a liquid or gas collection medium

			CH7		C	J-D	631		HY		190	13		нy				
	Sample # 1		Sample # 2		Sample # 3		Sample # 4		Sample # 5		Sample # 6		Sample # 7		Sample # 8		Sample # 9	
	600 N	VN1 32 Nitrile o(c. S	Neotou 201	sell uch 25- 5-mil rene	Ansell 38-414	-		Golvex 11-mil ri e	neop	l Neox orene 11/00]	neoprene		Best Nitri- Dex 707 (tested 1.2.09)		Best Nitri-Pro 7199NC-10 (tested 12/09)		Grab 6780R-	
	Break-		Break		Break-	Max	Break-	Max	Break-	Max	Break-	Max	Break-	Max	Break-	Max	Break-	Max
CHEMICAL	thru	Pt.	Vthu	Arm.	thru	Perm.	thru	Perm.	thru	Perm.	thru	Perm.	thru	Perm.	thru	Perm.	thru	Perm.
	(min)	Rate	(min)	Rate	(min)	Rate	(min)	Rate	(min)	Rate	(min)	Rate	(min)	Rate	(min)	Rate	(min)	Rate
Urethane/PMA 41150000010	10	Good	153	Ex	>480	Ex	10	V-Gd	298	Ex	163	V-Gd	not tested no		not te	not tested not tested		sted
Urethane/Xylol 411500411311	<10	Good	36	Good	<10	Good	50	Good	75	Fair	48	Fair	- 25	Fair	64	Good	199	Good
Phenolic/PME 41150040818	90	V-Gd	35	V-Gd	>480	Ex	>480	Ex	>480	Ex	>480	Ex	not tested not tested		sted	not tested		
Threshold rate for breakthru time	e is 0.1 u	ug / cm2	/ min as	per AST	FM stand	ard F73	9											
Permeation ratings: (per N. S	chlatter	r)																
Poor < 9000 ug/cm2/min																		
Fair < 900 ug/cm2/min																		
Good < 90 ug/cm2/min																		

Cł	for MDA Regulated Areas Updated 12/15/09	
Activity	Glove Options	
Routine contact with wet or tacky mixes	Best Nitri-Pro: Cotton reinforced nitrile • 3M Stock #68-38-063 • Maximum use time: 24 hours from chemical contact	
Cleanup with: • Solvents (PME, PMA, xylene) • CLI Aromatic Amine Decon. System		
High dexterity, <u>light duty</u> tasks – contact with wet or tacky mixes	 Best Nitri-Dex 707: 9-mill nitrile 3M Stock #68-38-121 to 124 (Size 6, 7, 8, 10) Maximum use time: 1-hour from chemical contact Do not use with pure solvents (PMA, PME, Xylol) 	Note time use limits
Wipe sampling only – no contact with wet or tacky mixes	Ansell Touch N Tuff Disposable Nitrile • 3M Stock #68-38-050 to 053 (S – XL) • Discard after each use or 15 minutes max	

Learnings:

- Forsberg guide not useful regarding MDA
- Manufacturer's permeation tests measured only volatile components
- Manufacturer's permeation tests do not address components of mixtures – report total mg permeation only
- MDA breakthrough took longer than solvent breakthrough for all the gloves and mixes tested
- MDA penetrated unsupported gloves significantly faster than supported gloves of the same material (nitrile and neoprene)

Glove Selection

 One approach is establishing a hierarchy of health endpoints, based on severity and reversibility

- Fatal in contact with skin
- Corrosive
- Dermal sensitizer
- Skin-absorbable toxin
- Irritant
- Dermal defatting

Glove Selection: Final thoughts

- If you mix or compound raw materials from another manufacturer, request that <u>they</u> conduct testing (nominal cost)
- Work directly with a glove manufacturer to conduct testing for you – but, remember – their 'answer' will be one of their own glove models, and you must use care in genericizing results
- Gestis guide in EU (also gives BT data) <u>http://www.dguv.de/ifa/en/gestis/stoffdb/</u> index.jsp,
- <u>http://www.ansellpro.com/specware/</u> index.asp
 http://www.ansellpro.com/download/Ansell_8th EditionChemicalResistanceGuide.pdf

Closing Comments

This was a VERY brief overview! Don't consider someone 'trained' to perform PPE selection after a presentation such as this - you can attend a week-long course on respirator or glove selection alone. Push for improvements at the Trade Association and Regulatory level, especially for dermal PPE selection.